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Mddelling the molecular distribution in chevron FLCDs 

by ARNOUT DE MEYERE* 
Department of Electronics and Information Systems, 

University of Gent, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium 

and INGOLF DAHL 
Physics Department, Chalmers University of Technology, 

S-41296 Goteborg, Sweden 

(Received 10 September 1993; accepted 31 January 1994) 

Farmulae are calculated for the main contributions to the energy in FLC-cells 
in the one-dimensional case. Special emphasis is given to the modelling of the 
smectic layers and to the influence of the electric field. For the study of structural 
questions in FLCDs, an efficient numeric simulation method is proposed. The use 
of it is illustrated with an example. 

1. Introduction 
In ferrodectric liquid crystal displays (FLCDs) the molecules are arranged in layers. 

At the moment when the display is filled, the liquid crystal material is isotropic, since 
it has been heated. On cooling down, it transforms into the nematic phase and later into 
the smectic A phase, where the layer structure appears. In order to have the molecules 
(which are perpendicular to the layers) parallel with the glass plates, the smectic layers 
must be planar and vertical. This is the so-called ‘bookshelf’-structure. The inter-layer 
distance & i s  approximately equal to the molecular length. At the final transition to the 
smectic C phase however, this inter-layer distance decreases and the molecules are tilted 
with respect to the layers. Since the smectic layers are pinned at the alignment coating 
on the glass plates, the only way to reduce their mutual distance is by tilting. The most 
probable geometry is shown in figure 1 .  It is called the chevron structure. There is an 
angle 0 between the molecules and the layer normal. The molecules can rotate on a cone 
around this iayer normal. 

Since the invention of the surface stabilized FLCDs [l], the smectic C* layer 
structure has been a topic of intense research and discussion. After high resolution X-ray 
and optical response measurements, the first model with bookshelf geometry was 
modified to describe inclined and bent layers [2-4]. Important adjustments of the theory 
came with ae introduction of the chevron structure [5-71. 

A very ipportant parameter is the layer tilt 6 (see figure 1), since it has a great 
influence on ihe optical contrast of the final display. Are the layers composed of planar 
parts (as in fi$ure 1) or is there a smooth curvature form one tilt angle to the other? Also 
the influence of an applied electric field on the position of the molecules and the bending 
of the layers i s  important for understanding the optical behaviour of the bistable device. 
Early arguments for a strong layer bending [8,9] have been vitiated by X-ray 
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398 A. De Meyere and I. Dahl 

Figure 1 .  In the chevron structure, the smectic layers are tilted in a symmetrical way. The Layer 
tilt angle is 6. The angle 13 between the molecules and the layer normal is typical for the 
SC phase. An important feature of the classical chevron structure is the S - 0 coupling. 
A bending of the layer results in a change of the interlayer distance and hence of the srnectic 
cone angle. 

experiments [ 10-121. Optical wave-guide measurements [ 131 confirm the idea of a very 
sharp chevron-tip. 

An important help in the interpretation of the different results from measurement 
would be a usable continuum theory. For twenty years, researchers have been trying 
to form an optimal energetical description of smectic C* liquid crystals-see de Gennes 
[14], Dahl [IS] and [16], and Nakagawa [17]. To a large extent the results agree. 
However, especially the compressibility of the layers is dealt with in different ways. 

Due to the complexity of the expressions, computer programs are under 
development many years later than their nematic counterparts. Macgregor [ 181 has 
published a method for computing smectic layer structure based on Dahl’s energy 
expressions. Recently, Leslie [19] presented theoretical considerations on flow effects 
in continuum theory for smectic liquid crystals, and his expressions are related to those 
published by Nakagawa. 

In this paper, we describe a simplified version of the energy expressions, based on 
Dahl’ s equations. We consider planar FLC-cells with the smectic layer normal confined 
to one plane; orthogonal to the glass plates. In this case, the calculations are one 
dimensional. Closed analytical forms for the different contributions are presented. 
The simplifications allow for some straightforward interpretations and computer 
implementations. In this way, we are looking for theoretical foundations for the 
experimental data concerning the chevron profiles and molecular distribution in 
SSFLCDs. 

2. Reference frames and vectors 
Figure 2 shows the coordinate systems that we used. The xyz system is the usual 

reference frame with the x axis perpendicular to the glass plates, and the z axis parallel 
to the rubbing direction. 

The cpk system is used for calculating elastic energies according to the expressions 
of Dahl [ 15, 161. The k axis is the smectic cone axis. An arbitrary orientation of the cone 
requires two angles. We study the situation where k remains in the xz phase. In that 
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1. - cos Usincpcos 6 - sin Osin d 

cos 0 cos cp 

- cos cpcos 6 

- sin cp 

cos cp sin 6 

- sin Usin cpcos 6 + cos Usin 6 

sin 0 cos cp 

sin 0 sin cp sin 6 + cos 0 cos 6 cos 0 sin cp sin 6 - sin 0 cos 6 
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X '  

Figure 2. Five coordinate systems which transform into each other through a simple rotation 
about one of the coordinate axes. The xyz system is the usual lab reference frame. The cpk 
system and the molecular qpn axes are used for calculating elastic energies. 

case the smectic layers are cylindrical and perpendicular to thexz plane. The orientation 
of k is then fully described with a tilt angle 6 from the horizontal yz  plane. Further 
rotation of cpk delivers the 123 or qpn axes connected with the liquid crystal molecule. 
The coordinates of n could be used if one prefers to describe the elastic forces with the 
nematic Oseen-Frank expressions. 

By means of consequent rotations, one can derive the coordinates of the important 
vectors in a straightforward way. In order to result in the right order of the molecular 
axes, a preliminary rotation ( +- 90 degrees around the z axis) of the lab frame xyz has 
been executed. The rotated vectors can be expressed as a linear combination of the 
(x, y, z) vectors in the following way 
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400 A. De Meyere and I. Dahl 

The columns of the transformation matrices 9' and 9 contain the coordinates of 
the transformated vectors in the xyz system. As a short notation we can therefore write 

ci PI ki 

q 3  p3 123 

Using this notation, other quantities, such as the matrix representation of the &-tensor 
can be determined. In the fully rotated qpn system, the permittivity tensor is as follows: 

0 0 E-3 

(in the general biaxial treatment). The representation in the xyz system is obtained with 
the following transformation law 

F = .y-c/y - 1 

Y can be obtained with equation (1). Since q, p and n are orthogonal unit vectors, F - ' 
is just given by TI, the transpose of 9. 

For the most frequent component one obtains 

With the usual uniaxial approximation, c1 = EZ = el and ~3 = q, equation (2) changes 
into 

eu = el + n:A& 

= c1 + ( - sin Usin cp cos 6 + cos Bsin 6)' Ac. ( 3 )  

Those expressions are similar to those mentioned in the literature-see [20] and [21]. 

3. Energies 
The energy stored in the liquid crystal system can be divided into a volume term 

and a surface contribution 

9- = j+du + L.h* &. (4) 

In its turn, the volume energy density has two main contributions: the elastic and the 
electric energy 

.f"d =.has + h l e c .  
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Molecular distribution modelling in FLCDs 40 1 

All these energy contributions contain derivatives of the vectors considered above. 
Instead of making derivatives of the complicated coordinate?, it is better to consider 
the transformation of each vector into linear combinations of the basic systems. Just 
as an example 

ak - _  - - sin cp c - cos cp p. as 

Let us discuss the different energy contributions one by one. 

3.1. Elastic energy 
3.1.1. Incorporation of the layer structure 

The layer structure is often handled by introducing a vector along the layer normal 
(k), the length of which is a measure of the layer separation (see for example Dahl [ 161 
or Nakagawa [22]). The crucial point is to come up with a decent formulation for the 
energy cost of layer thickness variations. Let us use the notation f i  for this contribution. 

3.1.1.1. Layer thickness and cone angle 

The situation is clarified in figure 1. 
Variations of the layer thickness are connected with changes of the cone angle 8. 

The following relations are easily verified: 

/z=lcos8, 

=acosS,  

cos 8 = v cos 6. 

with 

where 1 is the molecular length and a the distance between the layers along the z axis, 
the rubbing direction. This parameter a is in fact defined by the way in which the 
transition from smectic A to smectic C occurred. If the layers stick perfectly to the 
alignment layers during the transition, then a equals LA. the layer distance in the 
smectic A phase. Notice that the number of molecules between two layers is determined 
by this parameter, since it defines the volume between the layers. 

Equation (5) indicates a coupling between S and 8. Especially in the one- 
dimensional approach that we are dealing with, a (and therefore v) has to be constant. 
Hence, in this case, each variation of 6 causes variations of 8, which are very hard to 
establish. 

At this point, we want to refer to an important recent article by Willis et al. [lo]. 
X-ray measurements show that the compressed region, at the tip of the chevron, is only 
a small fraction of the total display thickness. This observation agrees with the coupling 
between 6 and 8. The elastic constant which expresses the energy of layer compression 
will be chosen to be sufficiently large, so that simulations confirm the thin compressed 
region. All of our considerations are within the frame of defect-free chevron structures. 
We agree that layering defects as suggested in [ 101 need a more complicated approach. 
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402 A. De Meyere and I. Dahl 

3.1.1.2. Expressions f o r  the layer compression energy 
Willis et al. [lo], use the following expression for the layer compression energy 

)’. f? = T(il--M)2 = .( cos 6 - cos 60 
A0 cos 60 

where I is the actual layer thickness, while A0 is the undeformed layer thickness, without 
compression or dilation; 6 and 60 are the corresponding layer tilt angles. 

Another, very similar equation has been formulated in [ 161. An expression is given 
for the ‘distension’ (negative of compression) of the layers 

The energy contribution due to the layer thickness variations can be written as 
follows-see [ 161. 

f; = Ty2. 

Still another possibility could be 

f j  = T(A2 - Ii)2 

which is similar to the one mentioned in [23]. 
If one wants to stress the relationship with the smectic cone angle, 

f i  = Tsin2 (0 - 00) 

could be used, as has been done in [24]. 

3.1.2. Expressions for  the elastic energy 
3.1.2.1. Oseen-Frank 

Early papers on ferroelectric liquid crystals still used some modified form of the 
nematic Oseen-Frank expression for the elastic energy. Nowadays, most authors use 
the more sophisticated description mentioned in the introduction. Nevertheless, it can 
be useful to compare the main contributions to the elastic energy in the classical and 
modern approach. 

In the case that angles only vary along the x-direction (1 -dimensional approach), 
the Oseen-Frank expression with equal elastic constants ( K ,  = K2 = K3 = K )  and 
411 = q1 = 0 is as follows: 

foF = + K ( ( V .  n)2 + (V x n)*) 

f = +K(sin2 0(p2 + (1 - sin2 0 cos2 (p)S: + 0: 
- 2 sin 0 cos 0 cos (p(px6, - 2 sin (pS,O,). (7) 

The index x indicates derivatives towards the x-co-ordinate. With equation (3, 
expression (7) can be simplified as 

This expression only describes how far the molecules deviate from their parallel 
positions without containing any information about their positional ordering. However, 
we could extend this classical energy expression to the case of smectic liquid crystals. 
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Molecular distribution modelling in FLCDs 403 

The bending of the layer itself costs energy. In the one-dimensional case, it could be 
described by a term proportional to the curvature of the layer. One can prove that the 
mean curvature of a surface K ,  equals - V * k, where k is the unit normal vector on 
the surface. 

fbend = L(V . k)’ = L C O S ~  66f. 

If we add the cost of the layer thickness variation, for examplefn”, we get for the total 
elastic energy 

fzas = T sin2 (0 - 0,) + L cos2 662 

(sin Bcp, - cos 6cos ( ~ 6 , ) ~  + sin cp - - ( tan6 

Although this energy expression may seem rather heuristic, it can be useful in drawing 
conclusions about smectic layer profiles, as is demonstrated in [24]. 

As a final remark on this energy expression, it should be noted that equation (8) 
really only contains two independent angles, cp and 6, because of the coupling between 
6 and 0, see equation (5).  

3.1.2.2. Dahl 
In his introductory study of deformations in the smectic C structure, de 

Gennes-see [ 14]-considers small rotations 4, QY and 52, in a local reference frame. 
In [15], expressions of de Gennes are formulated in a fixed laboratory frame. An 
elasticity theory for compressible smectic layers is given in [ 161. There, the elastic 
energy is composed of five different contributions 

(9) 

The expressions immediately take account of the layer bending energy and the layer 
thickness variation. In this paper we want to come to a practical form of this energy 
for some simple one-dimensional simulation studies. With the notation 

h a s  =.h +fc + f s  +f* + f g .  

( V , k ) , = i  [(%+%)I, 
2 axj ani 

we get the following basic deformations, defined in the same way as in [16]: 

t l l =  - c * ( V , k ) . p =  -sincpcoscpcos 66,, 

t 2 1 =  - p * (Vsk) * p = - COS’ cp cos 66,, 

t31 = c * ( V  X k) = coscp sin 66,, 

t12 = - c * (V,k) * c = - sin2 cp cos dd,, 

t22= - t l l =  +sincpcoscpcos66,, 

t32 = p * (V x k) = - sin cp sin 66,, 

t13 = k.(V X c )  = - sincpcos6cpx, 

t z , = V . c +  p * ( V X  k ) =  - C O S ~ ~ C O S  dcp,, 

t33 = - c * ( V  X c) - c * ( V , k ) - p  = sin6cpX. 
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404 A. De Meyere and 1. Dahl 

In our coordinate system, these contributions can be calculated with the expressions 
(lo). In $5, we will give a numerical simulation example. In order to make the 
calculations easier and to reduce the large number of unknown parameters, we simplify 
the expressions in the following way. We neglect the so-called gauge terms ( f ,  = 0) and 
we set 

We take f f  (equation (6)) for the layer compression energy. Therefore, we put 
B = 0 and replace the corresponding term in equation (1 1) by expression (6). 
We get 

cos 6 - cos 60 
cos 60 

) 2  + A  cos‘ 662 + Bcp: + Ccos cpcpx6, 

+ D(sin 6 - sin cp cos S)((p, + cos cpS,), (12) 

(comparable simplifications were made by MacGregor in [ 181). 
The first term in equation (1 2 )  describes the cone angle variation, the second one 

expresses the deformation of the smectic layers, the third one handles the energy cost 
of the molecule turning on the smectic cone and the fourth contribution takes the 
coupling of these two into account. The last term takes care of the chiral energy. Even 
if we eliminate 8 in (8), the coefficients of ~ 4 ,  6: and q,6, are still different in the 
expressions (8) and (12). This only indicates that the positional ordering of the 
molecules has more consequences than accounted for in (8). Full elastic considerations 
lead to equation (9), as indicated in [15]. 

3.2. Electric field energy 
For this important matter, we also refer to [25] and [26]. Depending on the driving 

conditions of the FLCD, one should consider alternative electric energy expressions. 
We will mostly consider the one-dimensional case. 

3.2.1. D independent of time 
In the case of a time-independent dielectric displacement D, which is equivalent to 
constant surface charge density on the electrodes, we should minimize the Helmholtz 
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Molecular distribution modelling in FLCDs 405 

free energy. The electrical part of the volume Helmholtz free energy density is given 
by 

H - 1  fetec - zE. De 

= +E&oEE, (13) 

where D, is the part of the dielectric displacement that is directly dependent on the 
electric field (and independent of the polarization density). In one dimension this is 

D,, = EOE~E,.  

Using 
D, = EOE,,E, + P,  = E ~ E ~ E ,  - P cos cp cos 6, 

we can write 

For exact analysis, equation (2) should be used for cn. This complicates formula (14) 
rather drastically. As we will see in $4, a variable ex, makes our numerical method 
practically impossible. As a first order approximation, we take E,, = (q + c1)/2. This 
means that for ferroelectric liquid crystal simulations, the anisotropy of the dielectric 
tensor will be neglected in the first instance compared with the major electrical 
effect-the orientation of the polarization. 

3.2.2. AV independent of time 
If AV, the voltage drop over the display, is kept constant, the formulae look even 

more complicated. In this case, we should consider the so-called Gibbs free energy 

Flexoelectric effects-see [ 161-are not included. From here we treat equation (15) in 
one dimension 

f L - 1  elec 2 E O E ~ E ,  2 - Ex Px- (16) 

The complication is that neither Ex nor D is constant. In order to express equation (16) 
in terms of the basic variables (the angles cp and S), we have to eliminate Ex. We start 
with Gauss' law (in one dimension) without charge accumulation in the bulk 

a 
-((ox) = 0 
dX 

or 

Therefore 

The integration constant C can be determined with 

[ E x =  - AV. 

the condition 
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406 A. De Meyere and I. Dahl 

The calculations are straightforward. We get for the electric field 

dx 
cos (000s 6 

EnJo EoExr Eo&nr !@ 

AV P E x =  -___ d + - c o s ~ c o s 6 -  

0 CrX 

This looks prettier, when the x-dependence of cxx is neglected 

Nevertheless, when substituted in equation (13 ,  both (17) and (18) result in a complex 
formula. Indeed, simulations simplify when the dielectric displacement D is taken as 
parameter. Therefore in this context, we prefer the Helmholtz expressions (1 3) and (14) 
to the corresponding Gibbs expressions (15) and (16). For a fixed D-value, the 
corresponding voltage drop across the liquid crystal layer is obtained afterwards from 
the equilibrium angle distribution. 

3.3. Surface energy 
In this article, we consider a simple classical surface energy contribution. With s 

the outward normal to the glass plates, n the director and p the unit vector in the direction 
of the macroscopic polarization, we can write 

(19) 

The first term tends to put the molecule near the glass surface as horizontal as possible; 
the second term pulls the polarization vector as perpendicular to the surface as possible. 
If we want to simulate very ‘hard’ boundary conditions (for example, the molecule at 
the border is not allowed to deviate from the horizontal position), we can take very large 
values for 71  and 72. 

The chevron profiles that we will model will be symmetric. The function 6(x) will 
be antisymmetric, the top of the chevron always being in the mid-plane of the LC-cell. 
This is a way to meet the so-called no-slip condition for the smectic layers, which states 
that the layer is anchored at the bottom and the top glass. 

.fsurf = ydn * s ) ~  - y2(p 0 s). 

4. Direct minimization 
Equations (12), (14) and (19) are the starting point for a minimization program. 

Wohler et al.-for example, see [26]-have already discussed a similar calculation 
technique for the case of nematic liquid crystals. It has been implemented for nematic 
LCDs by several authors-for example, [27]. 

Instead of deriving the Euler-Lagrange equations, we directly minimize the energy 
expression (4). The method with time-independent dielectric displacement has been 
chosen-see 5 3.2.1. For this method the electric energy is less complicated. 

We look for the functions 6(x)  and ~ ( x )  that minimize the following functional 
d 

.F = / [A(cos6)’6: + BQ: + Ccos rpyx6, 
0 

+ D(sin 6 - sin cp cos 6)((p, + cos rp6,) + ~ ( c o s  6 - cos 60)2 
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Molecular distribution modelling in FLCDs 407 

with 

(21) 

nl = - sinesincpcos6 +cos@sin6 

and 

PI= -coscpcos6 

where t and b indicate the top and bottom values at x = d and x = 0, respectively. qx 
and 6, are the derivatives of the angles with respect to x. The function 6(x) will be 
antisymmetric with respect to the midplane. There are no restrictions for q ( x ) .  We shall 
transform the integral (20) into a multidimensional function. First we consider the 
normalization 

X c = -  
d' 

c p x = d x = 2 .  acp acp 2. 1 

The layer thickness (0 < 4 < 1) is divided into a number of intervals, in which the 
unknown functions cp(x) and 6(x )  are approximated by linear functions. For instance, 
between the interval points ti and ti+ I ,  the function ( ~ ( 5 )  is replaced by the linear 
function ( ~ " ( 5 )  

We use the symbol Acp = Cpi + I - 'pi. 

The integral (20) can be split into a sum of subintegrals with respect to the intervals 
[ti, ti + I]. As an example, we consider the electric part Ei. First we introduce some 
new symbols. 

x = 2% 1 

- - * {D: + 2PDx A q A  sin cp cos 6 - A6A cos cp sin 6 
2EOE, ( A d  - (AS)* 

Asinx Asin$ AxAsinxcos$- A$Acosxsin$ +- l+-+--- + 
p 2 [  4 Ax A l j  (Ax)2 - (W2 

One can see that the integration leads to rather complicated formulae. Also this 
integration is only possible if a constant cXx is used. If one would use equation (3) instead, 
the integration becomes far more complicated. (One must even eliminate f3 first with 
equation ( 5 ) . )  

With the technique as demonstrated in the formulae (22),  the Helmholtz free energy 
becomes a function of the values cpi and 6i at the interval boundaries. This multi- 
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408 A. De Meyere and I. Dahl 

dimensional function is minimized. The technique is called the modified Ritz method 
for the calculation of variational problems-see [28]. The minimization of the function 
itself is done by a modified Newton-Raphson method with second order of 
convergence. Special care is necessary to avoid inappropriate extrema, such as maxima 
and saddle points. For the details of the simulation program, we wish to refer to [29]. 
A lot of analytical calculations are necessary. Not only the integrals themselves, but 
the first and second derivatives with respect to the node values ( c p i . ,  .) must be 
calculated. Moreover, in order to avoid numerical problems, one should expand the 
formulae as (22) in a Taylor series, where the denominator disappears. 

5. Simulation results 
In order to illustrate the use of our energy expressions, as well as the possibilities 

of the simulation technique, we give the following example. The q(x)  and 6(x) 
distributions are calculated for a typical FLCD-structure, thickness 2 pm. The numerical 
values for the different parameters are given in the table. For the relative magnitudes 
of the elastic constants, we made the following considerations. TIA is chosen in such 
a way that the chevron profile bends only slightly when a voltage is applied-see also 
1101 and [24]. The other constants were chosen is comparison with the classical 

The numerical values for the parameters utilized. 

Parameter Value Parameter Value 

A 1.0pN P - 3 0 0 ~ C m - ~  
B 0.5 pN 
C - 0-9 pN &parallel 5.0 
D 0 . 5 p N m - '  E F T  5.5 
T 500 000 pa 
00 22.5" Y l  30pN m -  
V 0.96 Y2 - 30/0/+ 3 0 p N m - '  

43 
Q 
(3 

c3 
0. 
5 

Figure 3. The position of the molecules on the smectic cone in each of the six configurations. 
The arrows represent the polarization vectors. The position of the molecules at the bottom 
and top glass plate (respectively bottom and top circle) is horizontal. State 1 is uniform, 
down; 2 is uniform, up; 3 splayed down, inward; 4 splayed up, inward; 5 splayed down, 
outward; 6 splayed up, outward. For our parameter set (with a negative macroscopic 
polarization), states 1, 3, and 5 occur when the electric field is downward and 2,4 and 6 
for an upward electric field. 
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Molecular distribution modelling in FLCDs 409 

Oseen-Frank expression fZas in equation (8). Furthermore, the stability relationships 
from Dahl and Lagerwall [ 151 had to be fulfilled. With the current simplifications, this 
means that A > 0, B > 0, 2AB - C2 > 0. 

Depending on the specific choice of the polar coupling ( y z =  -30, 0 or 
+ 30 pN m- ') at the alignment layers and the orientation of the electric field, we can 
make distinctions amongst six different configurations. In figure 3 these cases are 
illustrated by the position of the molecules on the smectic cone through the slab. The 
arrows illustrate the orientation of the polarization vector Pp, the case P < 0. Therefore 
the direction of the arrows is opposite to the direction of p in equation (19). Both glass 
plates are considered to have the same coupling characteristics. In general one might 
expect the following molecular distributions, depending on the signs of y2  and E .  P: 

E P > O  E P < O  

We can use the following names for these six distributions 

P > O  P C O  

1. Uniform up 
2. Uniform down 
3. Splayed up, outward 
4. Splayed down, outward 
5. Splayed up, inward 
6. Splayed down, inward 

Uniform down 
Uniform up 
Splayed down, inward 
Splayed up, inward 
Splayed down, outward 
Splayed up, outward 

For the uniform state and the outward and inward splayed states, there are always 
two alternatives: an upward and downward configuration. This illustrates the bistability 

6 molecular distributions 

0 1 2 

x f micrometer 

-*- 1 ; uniform down - 2; uniform up -.- 3: splayed down, inward 

-0- 4: splayed up, inward - 5:  solaved down, outward 

d- 6: splayed up. outward 

Figure 4. The q ( x )  distribution under an applied voltage for each of the six configurations, 
when the applied voltage is minimal (the results of the simulations were - 4 mV, 
8 mV, - 13 mV, 1 1 mV, - 7 mV and 1 1 mV for the six states, respectively). 
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Figure 5. 

A- I 
B=0.5 
c=-0 .9 
D=O .5 
T=500000 

gammal=30 20 - 
gammc2=-30 

- 10 

0 

A- I 
B=0.5 
c=-0 .9 
D=O .5 

cp 
20 

10 

0 

- ! O  

-10 

-30 

-40 

-50 

-60 

-70 

-80 

0 I 2 
X 

-30 E- 
1 - 5 0  

cp-distributions for different voltages in state 6: for 1 to 7, respectively, 0.021 V, 
0,247 V, 1.84 V, 3.95 V, 6.08 V, 8.22V and 10.37 V. 

-20 , I 

0 
I I 
1 2 
X 

Figure 6 .  &distributions for different voltages in state 6. 
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of the device. Figure 4 shows the six simulated cp(x)-functions, for small voltage 
drops. 

The magnitude of the y-values corresponds with [30]. Remember that with this 
simulation technique, we cannot require the voltage drop to be exactly equal to zero. 
Trial and error, with several values for D, leads to the depicted curves for very small 
voltages (in absolute value less than 15 mV). In the present simulation P is negative, 
and therefore the splayed state 6, for example, occurs when positive voltages are 
applied. Figures 5 and 6 show how the molecular distribution for this state 6 changes 
with the applied voltage. It is noted that a small voltage already suffices to pull the 
molecules towards the ( cp  = 0)-state, where the polarization vector is as vertical as 
possible. Because of the high value for the parameter T, 6 does not change substantially 
with increasing voltage. 

6. Conclusions 
With a fixed reference frame, we have calculated the different contributions to the 

free energy that is minimized in FLCD-structures. The layer structure has been included 
in the equations. Complicated general expressions can be simplified in the one-dimen- 
sional case. The number of parameters is reduced. One of the possible energy 
expressions has been used in a strong minimization program, that produces valuable 
simulations. Constant electrode charge calculations are easier to fulfil. More 
experimental data for the different parameters could lead to a deeper insight into the 
chevron structure of FLC-cells. 

This work was supported by the Belgium Fund for Scientific Research (NFWO). 
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